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SUMMARY 

orbital trarrsfsr vehtcb (MOW) wlth the primary mission of Satellite Launch and Repair 

(SLR). WAR will pmlde for economic us of high altltude space(light for both the public and 

prfvatsssctor. 

VSTAR comporrents W l l l  be built snd tested using earth based facilities. These 

annpomb will then be launctrad using the spats &ttle,into low arth orbit (LEO) where it 

will be cmtmted on a U. S. built space station Onee in LEO the Venlcle components will be 

required misslam 

.. .. + 
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a 0 semimajor axis 

hax - maximum txceleration 

h i n  - minimum acceleration 

F - force 
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mass of cabin 

mmgo module - mass of cargo module 
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m&t fuel - m a s  flow rate of propellents 

mwap - m a s  of fuel that evaporates 

mfuel - m a s  of fuel required for given A V  

mlnsul - m a s  of insulation 

. f t - 2  
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ft 
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miff9 s p w t  - mass of l i fe support systems 

mpcy - mass of payload 

mshielang - m a s  of meteorite shlelding 

mdructure - mass of structure of the cabin 

mwpport structure - mass of the support structure for the fuel tanks 

mass of vehicle at begining of burn 

m a s  of fuel tank 

total mass of vehlcle including fuel 

number of crew members 

stress 

maximum allowable stress in a materlal 

pressure at bottom of tank 

vapor pressure of fuel 

vapor pressure of fuel 

rate of heat leak into fuel tank 

total heat leak into fuel tank 

mass ratlo 

altitude from earth's center 

-itV 

denslty of fuel 

density of insulation 

density of metal i n  structure 

rmetal in tank - density Of metal in tank 

rtank - radius of fuel tank 
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ft 
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seconds 
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Tend - endu~ance of mission 

Thrust - engine thrust 

Tin - inside temperature of fuel tank 

Tout - outstde temperature of fuel tank 

V - velocity 

Vm&l In tank - volume of metal in fuel tank 

hank - volume of fuel tank 

VmhfJlJst - effective exhaust veloclty 

AV - change in velocfty 

LI - gravitational mass parameter for earth 
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industrialization and commmcialization of space includs, sudr at iv i t ies  (IS communications, 

emth " ~ ~ ~ ~ s t u c t i # ,  weather olmrvation, matarials pramsing, andenergy production, just 

to naneafew. Thesedemands wi l l  result in dn BWIP Incmming need for law Cost space 

tnnqmbtion togeosynchfm~~~~andather high orbits. The incfeasing demand for Vresetypes of 

missions canrot be satisfied by the space shuttle due to its low orbit service wiling. Thus the 

full potential of spas commercialization can aly be raaliad throcJn I!! use of reusable spaa 

bassdms 
- YsfAR is a manned orbital tmqwtation system desigred to perform multiple 

misstonrr while osnying out numerous tasks during eadr mlsshn The development snd 

deployment of WAR w i l l  result in extensive technical and samwnic benefits to business, 

industry, and thb milltary alika At the present time 

f m  low earthwbit using solid rocket boosters launctred from the spa13 sf~uttle orbiter. These 

Systems w St p m t  only partially satisf@g the E O  system market M o r e  efficient and 

powerful inertial Upper Stage (IUS) systems are being developed and used; but again, these 

systems are lnellectlve in satiwq the commercial demand Current systems navS another 

disadvantage in that they w not reusebleable, nor can they repair, service, or in any wey 

recover and bring back a previously d e p l q d  satellite. The us8 of these transportation methods 

results in large equipment and rean~pcb waste. 

satellites are deployed 

Ttm development and us8 of a space based manned orbital transfer Venlcle wlll 

eliminate many of the problems statal above. M o r e  efficient and economic geosynctrronous 

operations can be actrelved since the system w i l l  be completely reusable and w i l l  be capable of 

delfvsry, repair, refueling, and retrieving of geaynchnw#ws and other high altitude systems. 

x 



I 
The Vehicle for Space Trarrsfec and Recovery w i l l  be desiQled aa a modular Manned 

Orbital Transfer Vehicle (MOTV) (Figs. , 1 ). The vehicle w i l l  be capable of providing efficient 

and economic transportatim to and Iran geosynCnronous earth orbit  ( E O )  as well as m i s t i n g  

in ather needed space Ogeratiorrs. VSTAR wi l l  provide the capability to carry and/or retrieve two 

satellites to and from E O .  Other options1 E O  operetiom include refueling, repair, and 

repositioning of a te l l i tas  A typical E O  m h i m  for VSTM w i l l  rapire 8 2 to 3 day time period 

durfng which two new satellites am deployed, and two older satellites are recavered or repaired 

VSTAR will util ia the best CWacWistiCs af state d the art 

sdvancsd dsrlvstives of past and present space vehicles The fully rwsable MOTV w i l l  be capable 

d carrying out varying missions and performing n u m m  tasks during & mission. 

techn~logy and k i i p ~ r a t e  

The crew for WAR w i l l  mist of thres personnel includlq a command pilot, 

flimt engineer, and payload W S a l i s t  The choice of a three person crew provides m optimum 

balsnce barmen mission capability, environmental cuntrol, and ansumablea A three person 

crew also pnrvich a safety fator for extn-Mhicular activity (EVA). During EVA hvo 

astnnans w i l l  be needed outside the vehicle for retrieval and repair of satellites, while a third 

astromt w i l l  m a i n  inside to monitor the external activity as well as the onboard systems 

VSTAFt's modular &sign wi l l  allow midefable flexibility in mission 

amfiguratim thus adding to the eeoromio of the system. Future versions of VSTAR w i l l  utilize' 

Wanad modules for mom elabort& miss im that can be added 8s demand and technolw 

permits. The system consists of four primary modules which can be interdmged for 

performing different missions and tasks. The basic mission configuration for the SLR mission 

consids of command/cmtrol anter , cargo bay, fwl storm, and propulsion modules 

The command/control module w i l l  prwide vehicle control, monitoring functions 

and l i fe  support fcdlities. An equipment bay located behind the command module allows storage 

I 



of equipment such as manned maneuvering and robotic units along with other equipment needed 

for specific missions. The cargo bay module w i l l  be constructed using an open architecture 

truss assembly. This module w i l l  serve to carry satellites or other payloads as required by a 

given mission. The propulsion system chosen for VSTAR wi l l  consist of advanced chemical rocket 

engines with throttle, vectored thrust, and multiple restart capability. The propulsion module 

incorporates a central me engine assembly. 

The highest contribution to operational mts for VSTAR wi l l  be the expense required 

to deliver fuel from the Earth's surface into LEO. To reduce these costs an efficient fuelhngine 

combination must be developed Present research indicates that an advanced OTV propulsion 

system w l l l  provide the best performance. Although this type of propulsion system wi l l  require 

further research and development, the extra time and expense w i l l  be reawered during the 

mission l i fe of VSTAR. 

The development and deployment of YSTAR wi l l  add consider8ble impetus to space 

commerclalization and industrialization. Numerous technical and economic benefits w i l l  result 

from such a system. This report provides a detailed look at manned orbital transporation 

systems and suggests a viable MOTV for use near the end of the century. 

Z 



11. MISSIONPUNS 

e 

It Is essential that VSTAR be applicsble to several taslcs for ft to be an ecomnlcel 

deslgn choice for an MOTV. However, the primary design considerations must be centered around 

the main mission gosls, those perceived to be of greetest importanca in the neap future. The SLR 

mission w i l l  therefore determine the &sign cri teria for the MOTV. The mission planning 

required for the successlul achievement of this desired mlssion wl l l  be the decldlng factor i n  

suct~ design aspects 8s payload cspabilites and special servicing equipment as well as fuel, 

power, CrrrJ l i fe  support systems. 

The SLR mission is a complex task involving a combination of the manned maneu- 

vering units and telerobotics needed to capture md load Ute satellltes Into the cargo bgr of the 

MOTV. When immediate repair is not possible, VSTAR w i l l  be capable of retrieving two small 

satellites (approx. 2500 lbs each) or one large satellite (SO00 lbs) and returning to the space 

station for mors extensive repairs. In the same manner, VSTAR w i l l  be able to transport two 

satellites from the low-earth orbit of the spats station (apprax. 200 nmi.) to geasynchronous 

orbit. 

A Hohmmn transfer, involving an in-course plane change maneuver will be used 

for ttre trajectory from LEO to N O .  The M m m n  transfer (Fig 3 1, consists of a two-impulse 

manewer i n  which ttm main propulsion system is fired at the perigee of the initial orbit and 

then refired at the aogpe of the tarw orbit to recimlerize the orbit. After extensive study in 

the area of orbital mechanics, it has been determined that the Hohmsnn elliptical transfer w i l l  

provide the best possible trade-off between low energy requirements and time constraints. The 

slmpllcity of the tr%nsfef method wt l l  also l imi t  the maneuvering requlred for trajectory 

corrections. 

Since the VSTAR wi l l  initiate the Hohmann transfer from the 28.5 inclination of 

the U.S. Space Station, a plane change wi l l  be required to reposition the MOTV in  an equatorial 



I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 

orbit (0' inclination). Though there we several possible means for executing this plane 

change, only the two methods which seemed most logical and ecomical ly feasible were 

investigated for VSTAR'S purposes. One method involves first transferring from LEO to a 

high-earth orbit (HEO) followed by a one-impulse plane change into GEO. The alternative 

method shown in Figure 4 involves a two-impulse maneuver in which the f irst AV is achieved at 

the ascending node of the LEO for a plane chenge of about 5.5'. The remaining 23.0' of plane 

change needed for E O  is then achieved through the second AV applied at the descending node of the 

transfer orbit. 

Comparison of the two methods was based on the analytical calculation of the total AV 

required in each case. The results revealed that the LEO-GEO transfer involving a two-impulse 

plane change required about 20% less AV than the one-impulse plane change. The two-impulse 

method, therefore which requires a total AV of 14.27 1 ft/sec is more economical, requiring less 

fuel'than the one-impulse plane change, requiring a total AV of 18,040 ft/sec. 

The return t r ip to the Space Station w i l l  be executed by the same two-impulse 

plane change method, except the total AY w i l l  be achieved using reverse thrust of the same 

magnitude. To achieve the negative A V S ,  the MOTV must be turned 180' about its yaw axis in 

order to position the propulsion module forward. This is needed since VSTAR contains only one 

main propulsion unit mpable of prodwing the enormous pounds of thrust required for the 

LEO-GEO transfer. VSTAR's reaction control thrusters w i l l  be utilized to maneuver the MOTV 

into the reverse thrust position. As VSTAR approaches the node of orbit intersection, the 

primary reaction control thrusters w i l l  be used to generate angular momentum about the yaw 

axis. Both the primary and vernier thrusters of the reaction control modules w i l l  then provide 

the fine attltude adjustments to realfgn the MOTV on course. 

Though the design specifications of VSTAR are based on the SLR mission 

requirements, the MOTV w i l l  be capable of performing various other tasks. As a space-station 

based vehicle, the MOTV w i l l  also be available for emergency situations involving spacecraft 
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with system failures or mission complications. One much needed operation in which VSTAR 

suited is the collection of "space garbape". As more and more communication satellites are 

is 

developed each year, the need for removal of space debris increases. With the satellite retrieval 

systems on b m d ,  VSTAR w i l l  be capable of transporting space debris to higher earth orbits or 

back to the space station. 
/ 

One closely related application fur the MOR is the Interplanetary Vehicle Assist 

( IVA) mission which WBS considered during the prelimfnary design configuration of VSTAR. The 

IVA mission is a new concept that WBS perceived to be an excellent alternative in  making the 

plane change necessary for repositioning an interplanetary s p a r a f t  ( 1%) to an ecliptic orbit. 

To execute the mission VSTAR would be connected to the 1% using a rigid linkam ystem 

COnSlStlng of hydraullc braces which permit spin, pitch, and yaw control through thrust 

vectoring. It would serve as the main propulsion system by providing the AV for the plane 

change 8s well as working i n  conjunction with the ISC's attitude control thrusters (ACTS) to 

provide trajectory corrections. Since the ISC of the near future w i l l  mast likely be a 

space-based vehicle assembled on a U.S. space station in a 28.5' lncllnatlon low-earth orbit, 

the plane change to place the vehicle in  the ecliptic plane w i l l  require large amounts of fuel for 

producing an estimated total impulse of approximately 22,504 ft/sec. Further investigation 

into the IVA mission has however produced some discouraging results in the practicality of the 

mission. Basedon an assumed ISC weight of 800,000 Ibs, the fuel requirement in  executing the 

plane change maneuver for the combined weight of the 1% and VSTAR is estimated to be I3 to 14 

times greater than the designed fuel capacity of VSTAR. This means that several sets of strap-on 

tanks would have to be added to provide the increased volume of fuel. Though the mission would 

slgnlffcantly decrease the total weight of the ISC, this would only create more fuel expense and 

possible structural failures for VSTAR. 

Other complications including engine performance and the Vehicle tnterface 

Assembly (VIA)  used for linking thetwo spacecraft, are major factors considered in the analysis 
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of the IVA mission. The plane change maneuver for the combined system would require more 

than dwble the normal thrust of the MOTV's propulsion system. Maintaining rigidity in the 

Ilnkage system l imits the acceleration that the system can withstand and therefore higher burn 

times are required of the engines. Since engine l i fe  expectancy is directly proportional to the 

burn time of the engines, using VSTAR's engines for the IVA mission would therefore lower the 

operating l i fe of the vehicle. Storage of tb VIA would also introduce complications i n  the 

mission plans. The preceeding reasons m e  from careful analysis of the mission elements and 

provide supporting evidence for the decision that the IVA mission w i l l  not be feasible under 

near-future technology. 

The propulsion, power and l i fe support systems are selected through careful 

consideration of the amount of fuel and time required for each mission. The total mlssion time 

anticipated for the SLR mission is two to three days depending on the particular repair 

operations required. This includes the estimated IO to 1 1 hours needed for the round-trip 

trajectory. Besed on this consideration, the propulsion system used in YSTAR must have as high 

a specific impulse (Isp) as possible. furthermore, the fuel capacity needed for a three-man 

crew and the l i fe support and power capabilities of the MOTV must surpass the required level of 

the SLR mission in order to comply with safety standards. 

Mission planning for the SLR mission must also incorporate the travel constraints 

introduced by the space environment. Solar flares and Van Allen radiatlon belts release large 

amounts of radiation which can damaged the MOTV systems and cause fatal injury to the crew i f  

time of exposure or radiation dosage is too high. Since VSTAR w i l l  be primarily designed for 

short term missions, extensive pref l ight  planning w i l l  prevent the need for additional 

radiatlon shleldlng on the external structure. lncludlng the use of Van Allen radlatlon belt 

charts and solar flare predictions, in the planning of the VSTAR mission, w i l l  provide accurate 

determination of a safe mission schedule. 
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111. WIDANCE AND CONTROL 

In order to aaxwnplish ths SLR and ather MOTV missions, the guidance, navigation and 

antral ( W )  subsystem must satisfy a hwt of mJssim and perfmarrcs requirements.- The 

system must provide thecapabillty tormdmmsdM wlth other spacecraft and them 

. station. It mads also to provide the capability to de-orbit payloads, to deliver satellites to 

pmch orbital d t lans ,  and to support e#tended in-orbit operations such BS satellite repairs. 
-\ 

To pnrvida the attitude control far YSTAR, the best available sensing and data processing 

imtlwm wi l l  bs Incotgorated into the WkC subsystem. Slm guidence and navlgatlon Is based 

on determination ofthe position and acwleratim of the spacecraft, o n - h d  s w r s  wi l l  be 

used t o e  cbta for theWW,annputer' in OrdeF to determine thecraft'sorientation and 

velocity. An inertial rafersrrcs unit w i l l  be rcpuirsd to provide continuous attitude knowledge 

i n f m a t i o n  to the WkC function. Two Inertial Measurement Units ( IMU's) located forward of 

the flight deck w i l l  measure the acwlemtions of the MOTV and convert them into position 

vBc1ops. Ihe lMVs wi l l  be nr-sligned using startrackers and crew optical alignment sight 

Startrackers we optlcal devices which sight several bright navigationel stars and transform 

their location Into a vector. Using the GN&C pmcesm,  this vector is then compared to the 

star's known vector to determine the positlon of the craft. There w i l l  be two startrackers 

aboard VSTAR, located in the f m t  lawer section of the flight deck. One wi l l  be aligned in the 

direction normal to #a side of the MOTV and tb other in the dlrectlon normal to the top of the 

craft. There are two types of self-contained startradters, Boresighted and Gimbaled, that were 

considered 8s candidates for the MOTV BN&C subsystem. Studies of both s8nsors resulted in the 

decision to equip VSTAR with tha Bimbaled Startrackem. This choice is based on the perception 

that the simpllclty and minfmum slze and weight of the boreslghted tracker won't provide 

advantages comparable to the flexibility offered by the gimbal4 tracker. This 
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baresighted tradtsr (Ref. SI .  

c0)Cs is simply a manual version of a startracker which w i l l  be used to si@: stars thnrUgn a 

cross-haired scape in the badc winQw of the MOTV flight deck. This system of nevigation works 

by recording the time of crossing of a partiwlsr star and creating a position VBctOp. the data 

Umn can be mpmd to the IMU obtained position in  order to mom acarrately dig, the IMU's 

with the stmtradters. Rate g y m  and accelerometer assemblies w i l l  also be implemented into 

ttre~ionaldesigrdVSTAResaseconderyOuidancesystem. L o c a t i o n o f ~ m p o n e n t s  

w i l l  be bad on that which optimizes sensing capabilities. The rate gyms w i l l  assist the IMU's 

in measuring the angular ad trmsldiml velocities of the spacecraft A radar tracking sensor 

w i l l  also be inclukd in the W&C subsystem to support spacecralt rendezvous and docking 

opemtiuns into the visual piloted  rang^ In order to safely perform operations in  the dark, 

liQIts w i l l  be utilized to illuminate the tar@ for v i a l  piloted control operations 

(R8f.zd 

The space station w i l l  provide the navlgatlonal reference needed to initialize the position of 

the craft Once this data i s  known, the MOWS snsm w i l l  determine the craft's location and 

motions. The attitude control operation process w i l l  begin onca the orientation and velocities are 

determined by snsm ( Fig. 5 I. The signal w i l l  then be fed i n k  the WX Data Processing 

Computer, which transfers thesignal to the CRT dlspleys In thecrew command module. A 

pre-programmed or a piloted manewer signal is  then transferred back thraugh the computer to 

the reaction control thrusters. The reaction control system w i l l  then usa the optimal engine 

f ir ing pattern to execute the m m u w .  
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IV. PROPULSION 

System Function 

The need for reusable systems for transporting space hardware between low and high 

energy orbits will steadily increase over the next few decades. The extension of manned 

operations from LEO to GEO is  naturally the next step in man's conquest of space. These types of 

missions w i l l  require a MOTV capable of fulfil l ing a multitude of roles and tesks. The 

propulslon for such a vehicle Is cruclal to both Its technical as well as economic success. 

The propulsion subsystem must be able to accomplish the mission within a specified 

time frame while maintaining a high amount of efficiency. The complete system must be 

capable of providing both primary and auxilliary propulsion. The primary propulsion system 

p r c n h s  the maln propulsive thrust for misslon accomplishment while the auxilliary 

propulsion system provides attitude control and low thrust maneuvering capability. The 

primary propulsion system is responsible for performing the following operations. 

Insertion of VSTAR Into transfer trajectory between LEO and GEO. 

Circularization and injection of vehicle and cargo into GEO. 

Orbital manuevering within GEO to deploy and pickup cargo or other mission assignments. 

Injection of VSTAR into transfer trajectory between GEO and LEO. 

Circularltatlon and injection of VSTAR and returning cargo into LEO. 

This section provides a description of the propulsion considerations and final selections 

matie for VSTAR along with the justification for each final choice. Topics include the generel 

propulsion design requirements, the types of propulsion systems considered, and a detailed 

description of the system selected. 



Design Requirements and Guidelines 

The primary factors in the propulsion system design include thrust, mission time, 

propd;jnt type, reliability, and the availablllty of technology by the proposed operational date. 

The requirements used to define the operating constraints of the primary propulsion system are 

listed below along with their rational. 

so= i f ic lmoulse ( ISD) - The general requlrements and guldellnes for the MOTY 

were based on the need to minimize the amount of propellant required while maintaining 

optimum performance and crew safety. The need for this low propellant requirement is 

justified in light of the fact that the highest cast of the VSTAR project is the delivery of 

propellant from earth to LEO. Even the smallest savings In fuel w i l l  result in large savings 

over: the ten year l i fe  of the vehicle. Careful analysis of several enginelfuel combinations has 

shown Isp to be the greatest contributor to the reduction i n  propellant. For this reason the 

engines used on VSTAR must posses 8s high an lsp as possible. 

P e l i a b i w  - High system reliability is required due to the fact that this is a manned 

vehicle. 

Service Life- Each engine must have a long service l i fe with minimum maintenance in 

order to reduce overall operating m t s .  

Control - Each engine must be capable of multiple restarts over numerous missiom 

prior to the need for engine overhaul. The capability for thrust vectoring and throttling of each 

engine is also required to allow flexibility in mission profiles and cargo while at the same time 

allowing redundancy so that the system can malntaln operatlon In the event of an engice failure. 

Propulsion System Candidates 

Numerous types of propulsion systems suitable for a manned system have been carefully 

\O 



examined to determine their feasibility to provide primary propulsion for VSTAR. These types 

include electric, nuclear, laser, and chemical systems. Each of these basic types is briefly 

described below. 

Electric orowls ion - There we three basic types of electric propulsion currently being 

developed. These types include electrostatic ( ion) propulsion, electrothermal (arcjet, 

resistojet , and microwave) propulsion, and electromagnetic propulsion. Electric propulsion 

systems provide very high speciflc impulse typically in the range of several thousand seconds. 

Thls high Isp makes them a likely candidate from an economic point of view. However, these 

systems require extensive power systems and are usually limited to low thrust levels. Typical 

acceleration rates for electric propulslon systems are on the order of I 0'4 g's or less (Ref. 21 >. 

Such low accelerations would require a spiral trajectory for a mission from low Earth orbit to 

geosynchronous orbit resulting in a transition period of several months. The primary mission 

of the MOTV wi l l  necessitate traveling- through the Van Allen radiation belts. The time period 

for the transition through this region must be kept as short as possible to l imit crew and system 

radiation contamination. A long transfer period is impractical for a MOTV from a life support 

and safety point of view. For these reasons electric propulsion was ruled out as a candidate for 

VSTAR propulsion. 

r ProDulSLPIL- Nuclear propulsion systems use low density fuel such as hydrogen withotit 

the need for an oxidizer. The fuel is  Superheated by a nuclear reactor and expanded 

through a nozzle to produce thrust. Nuclear propulsion systems have very high Isp ratings on 

the order of 700 - 2800 seconds, making these engines very economic while providing a large 

thrust (Ref. 2' 1. However, there are disadvantages to these systems as well. Nuclear reactors 

are as yet unsafe and require thermal and radiation shielding which adds to the m a s  of the 
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vehicle. The operating engines also cause trapped radiation contamination in and around 

inhabited areas l ike the space station. Nucleer propulsion may prove to be a viable candidate 

for future MOTV systems; however, these systems st i l l  require considerable development and 

are unsuitable for VSTAR at this time due to the disadvantages mentioned. 

lpser Prooulsion - Laser propulsion systems utilize permanently based high power 

lasers to superheat the fuel Carr led in a target vehicle. The superheated fuel is then expanded 

through a nozzle to produce very high thrust. The Isp ratings of these systems are expected to 

be comparable to those of nuclear propulsion systems (Ref. 21 ). The main advantage of laser 

propulsion is  the savings in weight due to the faci that the primary combustion producing source 

(the laser) is located away from , and is not actually part of, the vehicle itself. Although great 

strides have been made in laser technology, there are currently no high power lasers nor 

associated power sources capable of accomplishing this task. The avionics for target tracking 

and guidance also prove to be a major problem. As can be seen the technology for laser systems 

st i l l  requires much development and wlll not be available for some time. The use of laser 

propulsion for VSTAR is therefore not a viable option. 

memica1 Prwulsion - Chemical propulsion systems fall into two major categories, 

solid and llquld, each of which produce thrust by combustfng a fuel and oxlditer mixture and 

expanding the hot exhaust gases through a nozzle. Both types are currently being used to 

provide s p m r a f t  propulsive power , and have an enviable performance record. 

Solid chemical propulsion systems use a solid propellant (fuel end oxidizer mixture). These 

engines have very high thrust levels due to the high propellant density. However the/ are very 

hard to control and have limited restart capability, Solid engines also have low specific impulse 

on the order of 200-300 seconds (Ref. 18 >. For these reasons =lid propellant systems are not 

suitable for VSTAR . 
12 
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Liquid chemical rocket engines utilize separately stored liquid fuel and oxidizer and come in a 

variety of configurations and operating modes. They mey be used for either low or  high thrust 

operations and have a reliable thrust control capability. Other advantages of liquid propulsion 

systems include built in open loop coolingsystems, and mast importantly availability of 

technology (Ref. I 8  1. The greatest disadvantage of liquid systems is the large propellant 

requirement. However, recent advances in liquid chemical propulsion technolap w i l l  allow a 

wide range of variable thrust and higher Isp ratings (400-500 sec) which w i l l  help reduce the 

amount of propellant needed. 

Advanced Technology Considefat ions 

One method of reducing the propellant requlrement whlle malntalning payload capability 

and high engine performance is to utilize new concepts which are currently being studied for 

future systems. Several different advanced concepts were studied in hopes of optimizing VSTAR 

propellant us8 as much as possible. Concepts studied include the use of both the aerobrake and 

the dual expander and dual-fuel/mlxed mode englnes. 

Aerobrake - Aerobraking uses the aerodynamic forces of the earth's atmosphere to slow 

down a returning spacecraft so that it can enter a low earth orbit. This technique effectively 

ellmlnates the need for a propulslve return AV manuever requlred to circularize the orbit 

around the earth. Aerobraking has the Wantage that it saves large amounts of propellant and 

mass. However, aerobraking also has i ts disadvantages. The equipment needed for aerobraking 

consists of a large ballute or  umbrella type shield that deflects heat aws/ from the vehicle 

during reentry. The system also requires a thermal covering to protect the vehicle from 

residual heat. Even if made from very thin material these shields and covers are extremely 

heavy. Another major disadvantage of aerobraking is the fact that the technique has never been 

tested and isbased solely upon theory at the present time. 

13 
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After examining the aerobrake concept it WBS decided not to use an aerobrake for VSTAR due to 

the dlsadvanteges mentioned 8s well as the structural design and mission of the vehicle. The 

chosen structure of VSTAR limits its ability to support the high aerodynsmic loads which surely 

accompany aerobraking. The open architecture design also provides no thermal mer ing to 

protect a returning payload during the aerobrake maneuver. To utilize aerobraking for VSTAR a 

reentry amfiguration must be developed consisting of a stronger more massive structure 

protected by the main shield as well as by thermal Insulation coverfngs. Any arrangement of 

shield and structure w i l l  result in excessive weight and structural problems. If placed at one 

end of the vehicle, less surface area of the vehicle itself must interact with the aerodynamic 

forces occuring doring reentry but the rqu i red size of the shield grows exponentially with 

required rearward distance that the shield must envelope. If the shield is placed along the length 

of the vehicle the size is  reduced only slightly and even more vehicle surface area is now 

interacting with the aerodynamic forces, so the structure must be even stronger. The added 

weight, expense, and maintenance of the sheild and its support, 8s well os the added weight and 

cost needed to increase the strength of the vehicle structure makes aerobraking undesirable at 

this time. 

Puai ExDander and Duaf-fuel/Mixed-Mode Ena i n q  - An engine that uses the dud-fuei 1 

mixed-made concept burns a trlpropellant combination of two fuels and one oxydizer. This 

concept usually consists of two fuel and oxidizer combinations. One combination (mode 1 1 

consists of both a high density, low Isp hydrocarbon fuel and oxidizer (LOX/RP- 1 1. The second 

combination consists of a low density higher Isp fuel and oxidizer (LOX/LH,). Both 

comblnatlons are burned In the Same stage. The combustion of these two propellant combinations 

(modes) can be done in sequence or in parallel thus allowing fuel usage to be tailered to a 

particular mission. This mixed mode principle benefits some vehicles by decreasing the 
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propellant mass and volume as well as the overall propulsion system structure. The 

mixed-mode system am be incorporated by using entirely separate rocket engines for each 

mode or by usfng a dual expander engine. 

The dual expander - variable throat engine concept (Fig. 6 1 allows either a 

bipropellant or dual-fuel/mixed-mode (tripropellant) system to burn the propellant in a 

double combustion chamber arrangement (Ref. 5 1. The systwn consists of both an inner 

primary combustion chamber surrounded by a secondary chamber. The dual chamber system 

operates at higher chamber pressure values than that obtained in single chamber systems, thus 

improving the Isp for a given propellant combination. The dual chamber arrangement also has a 

higher expansion ratio which typically reduces the nm1P *pc!ion bell housing by nearly a 

half of that fWnd for single systems (Ref. 5 1. The design also Incorporates a variable throat. 

The variable throat allows adjustment of the nozzle area ratio thereby providing near optimum 

performance at all thrust levels while maintaining the same nozzle exit area (Ref. 5 >. 

Several trade study analyses where conducted to compare conventional bipropellant 

( LOX/LH2) systems with dual-fuel/mixed-mode systems for given mission and vehicle 

parameters. Figure 38shows the propellant required for a given Isp rated engine incorporating 

either a bipropellant or a dwl-fueVmixed-mode system. The results indicate that better 

propellant efficiency can be acheived using one of the advanced orbital transfer vehicle engine 

designs modified to include dual expannder - variable throat technology. No appreciable savings 

were found for VSTAR using the dual-fuel/ mixed-mode concept. This result was primarily due 

to the lower Isp rating that is characteristic of most hydrocarbon fuels such as kerosene or  

RP- 1.  

It should be pointed out that these studies are in no way exhaustive but rather represent 

the best choice from currently available technology. It is also important to recognize that 

improvements in  both the design as well as the propellants of dual-fuel/mixed-mode systems - 
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ma/ increase the lsp ratings of these engines within the next 10 - 1 S years. Figure 3Bshows a 

theoretical case for a dual-fuel/ mixed-mode engine with a high Isp (492 secs.) which 

indicates that if such an engine cwld be developed it would require slightly less propellant and 

therefore should be used for VSTAR. 

VSTAR Primary Engine Selection 

Several existlng and Weloping engines were consldered for the primary propulsion 

system. Most of these systems where ruled out due to low specific impulse, no restart, or no 

throttleable thrust capability. A few engines do, however, fit the specified propulsion 

guidelines. For the reasons previously discussed an advanced OTV chemical propulsion system 

has been c h m  as the primary propulsion for VSTAR 

The main engine assembly selected for VSTAR w i l l  consist of three Rocketdyne Advanced 

Orbital Transfer Vehicle engines (Fig 7 ). The engines w i l l  be modified using the dual 

expander - variable throat design, thus improving the Isp while reducing size and weight. The 

chosen engine does not yet exist as an off the shelf ltem but is currently under development and 

should be available within the time schedule propased for VSTAR operation. Each engine w i l l  be 

fully throttleable and gimbaled to provide vectored thrust capability. A three engine cluster has 

been selected to provide a balance of mas, cost, performance, engine life, and redundancy. 

Together these engines w i l l  be capable of providing a velocity change maneuver on the order of at 

least 28000 ft/sec in  order to accomplish the geosynchronous mission. 

VSTAR Propulsion System Design 

Three primary MOTV propulsfon system configuratlons have also been considered to 

determine the most mt effective design for VSTAR. These include the single stage, 1 1 /2 stage, 

and common stage (Fig. 8 ). 

16 



I 

Sinale Sm - The single stage system is the simplest but results in excess burn-out 

m a s  m the propellant is consumed. This design does however offer the added advantages of 

simplicity amf reusability. 

One-Half Stm - The one and one-half stqe system uses a single a r e  engine 

system with externally mounted drop tanks which are released as the fuel is used up, much like 

the space shuttle external tank. These drop tanks effectlvely increase the performance of the 

system , but are inefficient since the used tanks are not recovered and therefore continually add a 

nonrecoverable cost. Another configuration using reusable drop tanks at f i rst appeared to be a 

viable solution to this problem. However these tanks rtr;lJit e their own propulsion systems and 

avionics to return them to a parking orbit in  LEO, thus negating the advantage of their use. 

Common Stapk - Common stage systems provide a compromise between mass economy 

and reusability. These systems utilize a steging process whereby each stage is dropped as its 

fuel 1s consumed. The empty stages are then returned to LEO where they are refueled for future 

missions. Although they appear to be efficient, common stages have a drawback in that each stage 

requires a seperate engine, as well as avionics equipment for the return t r ip  to LEO, thus 

negeting the original fuel and weight savings. 

Of the three systems evaluated a single stage configuration was finally chosen as the best 

design for VSTAR since i ts simple design ultimately provides the best cost of the three systems 

studied andalso l imits the overall problems encountered (Fig. ? 1. 

Auxilliary Propulsion System 

The reaction control system used on YSTAR will  llow attitude c ntr ! ( p i t  h, m!l, or 



yaw) and positioning of VSTAR near target spacecraft by performing translational and angular 

speed changes.There we two primary means of providing reaction control - angular momentum 

devices and thrusters. Arlgular momentum devices include reaction wheels, momentum wheels, 

and control moment gyros. In order to provide the control required for a vehicle the size of 

VSTAR these momentum devices would have to be massive. Also, angular momentum devices 

provide only rotational control so that thrusters are s t i l l  required to provide for translational 

maneuvers. Thus the best method of providing reaction control and vehicle maneuvering for 

VSTAR i s  in the form of an auxilliary propulsion system utilizing primary and vernier 

thrusters. 

The choice of the auxilliary propulsion system used on VSTAR is  based on current state 

of the art technology. A system simllar to that used by the space shuttle has been selected due to 

its availability and proven reliability (Ref. u). The auxilliary propulsion system will  consist 

of one forward module and two aft modules, each with its own monomethyl hydrazine fuel and 

nitrogen tetroxide oxidizer storage system (Fig. 10). The primary and vernier engines selected 

for VSTAR are the Marquardt R-40A and R- 1 E respectively (Fig. \I ). Twelve primary 

thrusters are used for each module. The primary thrusters are each capable of producing about 

870 pounds of thrust and will be used to provide normal translational and rotational control. 

Four vernier thrusters are also provided on each module, each capable of 25 pounds of thrust. 

These vernier thrusters w i l l  be used to provide fine adpstments in  vehicle attitude and position. 

.. 
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V. STRUCTURE 

Configuration 

. The configuration chosen for VSTAR wi l l  enhance mission flexibility and lends itself well 

to future fmprovements ln spacecraft technology. The structural components of the MOTV wi l l  be 

four separate modules linked in the following order: command/control cabin , cargo bay, fuel 

storage module, and the propulsion module. The modular design w i l l  allow for simple repair and 

maintenance in space and w i l l  permit vehicle adaptatfon for various mission requirements. When 

the engines requlre overhaul, they can easily be disconnected and temporarily replaced while 

extensive maintenance is performed at the space Aatfon or on Earth. 

The command/control cabin w l l l  be connected at the front of the vehicle and wi l l  contain 

the vehicle control center and the living/mission section which enables the crew to have a 

comfortable work area during their mission. This cabin w i l l  contain an airlock for EVA and cabin 

access. Power generation systems, communication/data link systems, computers, flight control 

systems, l i fe support systems and mission systems w i l l  be housed in  this module. The 

command/control cabin w i l l  have radlation and thermal control to allow human and electronic 

habitation with sufficient protection from debris penetration. The size of the module is designed to 

have cylindrical shape with a diameter of 13' and a length of 23'. 

f o r  the MOTV to accomplish its primary mission, i t  must have some means of transporting 

cargo. The base design cargo module i sa  light truss structure that can carry 9000 cubic feet of 

cargo. The diagonal supports on the top side of the bay wi l l  be retracted for satellite caking in 

and out of the bay. The maximum mass of the cargo depends on the particular restraints and 

vehicle accelerations, but for the primary mission of transporting satellites from LEO to GEO, ?he 

payload l imi t  is 5000 pounds. The SLR mission also demands that the payload area contain a 

telerobotic arm for retreival and deployment of satellites. A telerobotic work station (TW.S) w i i l  

also be located in the cargo bay for performing various repairing and refueling operations and 
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minimlze the EVA of the crew. The size of the payload area is therefore determined by the area 

needed for servicing. The planned dimensions of the bay are 45' X 16' X 16'. 

The only purpose of the fuel storage module is to store the fuel of the vehicle. This section 

being modular w i l l  allow mission planners more flexibility for future missions as new 

developments in  fuels and fuel storage are discovered. The currently proposed design is  optimized 

for the primary mission and any deviation from this w i l l  not minimize the fuel requirements. 

The fuel section permits the stable storage of cryogenic and multi-fuel systems. One radiatorjheat 

pipe system wi l l  be alloted for the combined fuel and propulsion section to minimize boil-off and 

thermal conduction from the engines. The funnel shape of the proposed fuel section w i l l  have a 

maximum diameter of 15', a minimum diameter of 7' and be 53' ir, iength. 

The'propulsion module contains engines and the thermal control unit previously 

mentioned. The modular design allows for maintenance simplification, as well as providing 

deiigners with a simple means of improving MOTV performance as new engines are developed. The 

estimated dimensions of the propulsion section wi l l  be 7' in diameter by 6' in length. 

Thermal Protection 

Thermal protection for the crew and the structure is of prime importance in the success 

of the mission. Heat i s  generated within the vehicle from several sources, inciudlng the engines, 

electrical systems and crew. There is  also a significant flux of heat from the Sun and Earth. 

Insulation, heat pumps, radiators and heaters are the devices which wi l l  control the heat flow 

through the MOTV. 

Multilayered insulation( MLI) is  a standard type of insulation popular in today's 

spacecraft. MLI reduces the flux through the interior of the spacecraft by redirecting the neat 

flow around the vehicle rather than through it. This insulation has proven its effectiveness in  

many satellites and should do the same for VSTAR. Another insulating measure wi l l  be the paint of 

the surface exterlor of the vehicle which wi l l  reflect much of the solar radiation. Heat pumps, 

radiators and heaters wi l l  be connected together in a control system to allow a stable environment 

t o  
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for the interior of the MOTV. This system w i l l  also be a part of the environmental control system 

needed for the human occupants. It i s  designed to handle a maximum heat flow into or out of the 

interior of the vehicle from the external and internal environments. 

The thermal control system components of this vehicle w i l l  be similar to that of the STS. 

They w i l l  however be scaled down due to the smaller crew slze and the absence of aerodynamic 

heating from atmospheric re-entry. Since VSTAR never enters the atmosphere, the only heat 

sources are the internal heat of the vehicle, the heat provided by the Sun, and the albedo of the 

Earth. The solar output i s  408 to 45 1 Btu/ftA2-h the earth's radiation is 72.9 to 77.4 

Btu/ftA2.h and the space sink temperature is 0 degrees R. (Ref.?). The hotter case w i l l  occur 

when VSTAR is between the earth and the sun. At that time the area facing the sun and L I I ~  earth are 

equal at 420 ftA2 and the external heat input is 221,992 Btu/h. Internally, the electronics and 

power generation w i l l  input a maximum of 10,000 Btu/h, the crew input around 3,000 Btu/h . 

An isolated thermal control system for the engines and fuel tanks w i l l  be developed to handle the 

total heat transfer. The cargo bay w i l l  be thermally connected to both the cabin and the fuel 

section but the heat input from this section is minimal and would be limited by the struc?ural 

material. The cabin is estimated to have an external heat flux maximum of 153,940 Btu/h and an 

internal input of 13,000 Btu/h. The MLI allows a net inflow of 1,522 Btu/h added to the 13,000 

btu/h that remains inside the vehicle for a total of 13500 Btu/h that must be removed by the 

radiator. The maximum heat input to the fuel and engine modules occurs at the same position in 

space with the englnes operating at maximum thrust. 

The choice of the type of heat exchanger to space is the key to limiting the weight of the 

thermal control unit. The radiator used w i l l  be a rotating bubble membrane type that cools the 

fluid by spraying i t  outward into an enclosed rotating sphere which then collects the fluid at the 

center line of the sphere for reuse. The surface area for the cabin radiator sphere must be 25 $3 

fY2, glving i t  a radius of  1.66 ft and a total system mass of about 50 lbm. for the required output. 

(Ref.31). An environmental heater w i l l  also be placed in the r,ommand/control cabin to avoid 

overcoollng which may m u r  at any time other than at maximimum design input heat flux. A more 
- 

21 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

accurate analysis can be obtained by the use of Finite Element Analysis for the desired minimum 

and maximum conditions. 

Additional thermal and radition control w i l l  be applied to the three optical view ports i n  

the command/control cabin. Although the vehicle would be better at protecting the crew without 

the thermal leakage and radialogical acceptance of windows, visual capability w i l l  be helpful in 

docking and in locating satellites or non-signal-transmitting objects. VSTAR wi l l  have two 

windows in the cockpit section and a single window facing the cargo bay to provide the mission 

specialist with a physical view of the bay and facilities. Each window must be constructed to 

minimize the undesirable effects. The methods for this have been refined Over the years of space 

exploration. The process is relatively simple but the product expensive. A special glass is 

produced containing a small percentage of Iron Oxide, which l imits the passage of harmful 

ultraviolet radiation. To prevent penetration of excessive thermal radiation, a thin layer of gold is 

used as the sandwiched layer between two plates of glass. A thin layer of aluminum oxide ana 

magnesium floride are applied to the exterior surface of the window to l imi t  X-ray penetration ano 

unwanted surface reflection, respectively. The design of the windows was f irst used by earlier 

spacecraft including Apollo and wi l l  be utilized by VSTAR. 

Materials Selection 

Although the limfting factor i n  determining structural weight is the extensive debris and 

micrometeoroid protection, the loading of the structure due to acceleration is also analyzed to 

determine material requirements. To minimize the thickness and mass of the structural walls the 

material with the highest specific strength wi l l  be used. for composites, !his specific strengtn 1s 

dependent on the direction of the applied force. Cost of the material production is another 

important factor i n  material selection. Cost per unit mass of a material multiplied by the mass 

required for that particular material to support the load determines the cost of the material. 

Aluminum and steel have very low costs while composites are relatively high priced. 

Compatibility with the environment and with other materials is also a factor in determining the 
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best materials for a function. Space is  a harsh environment , extremes of heat and cold, the 

absence of any external pressures and destructive radiations. It quickly causes an exposed 

material to deteriorate. Corrosion due to internal fluids and contact with dissimilar materials also 

weaken and destroy materials. Alumlnum deforms under the temperature variations and epoxys 

dissolve relatively quickly in the emptyness of space. Aluminum w i l l  not suvive long when i t  

contains corroslve flulds and steel in contact with aluminum wi l l  corrode. 

After material analysls, aluminum is determined to be the best material for the debris 

sheilding since It is inexpensive and under no structural loading. Material selection for the other 

parts was more complicated. For the command/control cabin, the predominant structural 

material w i l l  be a Boron Aluminum comdcnite. Its strength and the fact that i t is  a metal 

composite glve it better characteristics for debris protection. Steel has been chosen for the fuel 

tanks since the fuels have relatively high pressures and corrosive tendencies. Because of the size 

and required strength of the cargo section, a Graphite Epoxy composite with an aluminum casing 

has been chosen for this module. 

Debris and Micrometeoroid Protection 

The lifespan of the vehicle w i l l  determine the cost effectiveness of VSTAR. The longer the 

vehicle can perform it's mission, the less the cost per mission. In space, there are a number of 

events that can l imi t  the l ife span of a spacecraft, but debris and micrometeoroids can inflict the 

greatest structural damage. These small partlcles which are travelling in  orbit with the vehicle 

can impact with it and causing a great deal of damage by penetrating pressure tanks or shattering 

support beams. In the low altitude orbits, such as VSTAR's parking orbit , the debris is relatively 

dense due to man's space exploration. For this reason VSTAR must be shielded. 

To obtain a l ife span of ten years requires a large amount of shielding. VSTAR's design has 

opted for a 99.0% chance of not having debris or meteoroid penetration for ten years. As 

compared with NASA's requirement of 99.993 protection percentage over ten years for the 

pianned space station, VSTAR's percentage Seems a l i tt le low. However, unless there is a great 
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increase in the need for satellite repair and fueling, VSTAR wi l l  be spending most of it's l i fe 

unmanned in a low-earth orbit. This results in a very low percentage chance that debris or 

micrometeoroids w i l l  penetrate the command/control cabin, fuel tanks or structure of the 

spacecraft during the more critical, manned periods of VSTAR's lifespan. 

Usfng the NASA program, BUMPER, the minimal amount of shielding was determined to 

give the desired 99% protection for the ten year duration. This program calculates the 

survivability percentage based on duration, shielding and wall thicknesses. Optimizing for the 

minimal thicknesses results in the lowest amount of weight addition required for adequate 

protection, thus minimizing the additional fuel and cost required. BUMPER was used to determine 

the survivability of each module. The results can be seen in table 1 , and a graphical representaion 

shown in figures 12 & 13. 

Table 1. Results of BUMPER Analysis on YSTAR 

Module sheild wt. stand off dlst sheild thickness MLI 

(lbm) ( in> ( in) 

Cabin 286.05 16 0.0 156 Yes 

c w l o  162.77 3.5 0.0260 no 

Fuel Tanks 116.20 5" 0.0208 Yes 

* added to the average of 6" from tanks 

The cargo bay is an unusual case in  that i f  the vessel is penetrated there is no fluid loss. 

However, because an epoxy was chosen as the structural material a penetration could mean that the 

beam shatters losing a l l  of it's strength. An arbitrary total radial l imit of 3 inches total was 

allowed for the beams of the cargo bay to ease handling of the cargo, simplify module construction 

and minimize the surface area of the structure. To minimize the shielding weight ibr the tanks, a 

single shield can be plaed around all the tanks. An assumption of BUF'FER is that the debris 
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impacts normal to the surface. In the particular case of the fuel tanks, particles impacting normal 

to the surface is improbable, due to the geometry of the structure. An average distance from the 

shield surface to the tank wall is assumed to be the tank wall  In the program to improve the 

accuracy of the output. Due to shuttle transfer requirements for the vehicle, an armor offset 

distance l imi t  must be accounted for the command/control cabin shielding. 

With the micrometeoroid shielding , the load bearing members are now protected from 

excessive wear and abrasion. However, communications equipment and heat pipes as well as all 

other exposed devices w i l l  slowly be worn away due to debris, micrometeoroids, and evaporation of 

the materials into space. These devices w i l l  have to be covered externally or stored within 

VSTAR, while not In us .  Much of the u,imunication equipment w i l l  be housed within the MOTV to 

avoid breakage during satellite loading, unloading, and servicing. The remaining devices and the 

entire external portion of the vehicle should be painted with thermally reflective paint and an 

additional thin f i lm of polyurethane. This coating wi l l  have to be reapplied every few years to 

compensate for evaporation and sandblasting from debris. This should significantly extend the l ife 

of the external devices, the meteroid shielding, as well as the entire vehicle. 

The thermal control , materials selection , micrometeoroid and debris protection and 

required strength are a l l  combined in constructlon. Cross-sectional views of VSTAR’s structural 

elements can be seen in Figure iq. These methods of construction minimize weight and maximize 

performance of the thermal control system and shielding. Module joints and cargo bay connections 

are also designed for ease of operation and construction i n  space, while allowing for high stresses 

and loads. The joints function by interlocking the connectors and screwing the locking mechanism 

over the interconnection, (Fig 151. This method i s  currently being studied for space construction 

by several companies. These joints must also allow power and data communication lines to run to 

the propulsion section from the command/control cabin. This is accomplished by the use of 

standardized electrical connectors at the joints which allow the lines to run parallel to the 

structural members. 
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VI. LIFE SUPPORT 

The Enviromental Control Life Supgort Sys*hm (ECLSS) 

The ECLSS used on the YSTAR i s  the system that provides for the amfortabil ity of the 

crewmembers. This system regulates the temperature, pressure and water supply, and 

provides the facilities for sleeping, storage of food, and wmte collection. In other words, the 

ECLSS Is the system that w i l l  keep l i fe onboard VSTAR as comfortable as possible. The ECLSS 

wi l l  control cabin l i fe for three crewmembers- pilot , flight engineer , and payload specialist. 

Specifically, the E C W  wi l l  take into consideration the following: 

a Atmospheric revitalization system 

- Control of the temperature, cabin pressure, humidity 

b. Facilities (cabin design) 

-Vertical Sleeper/Waste CollectorlFood Gallery 

c. Water and Food Supply 

d EVA Support 

Many of the systems employed by the MOTV are similar to the control systems used in the Space 

Shuttle, however the site is optimized for VSTAR. 

Atmosoheric Revltalitation Svste m (ARS). - To provlde the proper atmospheric conditions, 

oxygen must be replenished and the harmful gases eliminated. The standard conditions that are 

needed for the ideal atmosphere in the cabin are: (Ref.29) 

A i r  Temperature- 16 - 26 C 

Atmospheric Pressure- 14.7 psia 

AtmosphericComp- 21 % Oxygen, 79% Nitrogen 

Humidity- 5 - 16 C (dew point) 

2 6  
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from the cabin air. To do this, filters w i l l  be used that contain Lithium Hydroxide ( LiOH) and 

activated charcoal, which absorb the CO2 and remove the contaminants. These f i l ters are 

replaceable and can be easily maintained The second job of this system is to maintain the 

standard conditions which were previously stated. This is done through the computer system 

that monitors and controls the temperature, pressure, humidity, and other conditions. The 

computer system is the main regulating device in YSTAR, but at anytime the program can be 

overridden for personal preference. 

The Facilities of Comfori - The facilities available on VSTAR wi l l  be designed and installed with 

the comfort of the crew ln mlnd. The maln facllltles of VSTAR are the vertlcal sleeper (VS), 

the urine/fecal collector, the food galley, and the personal hygiene center. There w i l l  be only 

two sleepers available in the cabin since one crewmember w i l l  be on duty at al l  times. The VS 

(Fig 16) w i l l  have al l  the requirements needed for each crew member such as crew preference 

ktts, trash containers and bags. Since there are only two sleepers for the three crewmembers, 

the personal storage compartments w i l l  be located elsewhere in the cabin. The sleepers w i l l  be 

retractable to increase the open area space when they are not in use. The sleepers are vertical 

tominimiztthespaaneededfor sleeping. In t h e a b m o f g r a v i t y ,  sleeping pasition wil l  not 

matter. Straps are located in the sleeper to stabilize the crew member's body while asleep. 

The second major facility is the waste collector which collects and disposes of both liquid 

and solid waste. This collector (Fig. r7) wi l l  be similar to the one used in the Skylab missions. 

The collector may be larger than the one used in the Orbiter; but with the cabin design, size is 

not a constralnt. Also, since the Orbiter had problems with the reliablllty of Its waste 

collector, i t  seems much more sensible to use the one in Skylab. 

In the early flights of space travel , many different types of food containers have been 
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tested. They ranged from the metal, squeezable tubes and spoon-bowl packaging of the Apollo 

missions to the freeze-dried foods of Skylab. For VSTAR, acornbination foodgallery/hygiene 

center (F1g.H: w i l l  be used This food gallery is the third major facility in thz cabiii. The 

gallery w i l l  be located towards the aft end of the cabin. This gallery is a cabinet-style gallery 

that consists of serving trays, a pantry, hot/cold water dispensers, and a conventional wen for 

warming food. The gallery has two doors that open up to reveal a fold out table for food 

preparation. Many types of food w i l l  be stored in several different ways in the pantry including 

dehydrated and freeze-dried food. The beverages onboard w i l l  consist of instant mixes which 

are added to water. Examples of these beverages include tea, lemonade, Koolaid, and Tang. 

Water and Food SUDDIV - Since the VSTAR is a manned OTV, food and water supply needed for an 

average mission had to be taken into consideration. Water w i l l  be used for coolants, personal 

hygiene, and drinking so an average of 8 Ibs of water should be needed per man per day; about 

6.5 lbs Is for drinklng. The types of foods w i l l  range from mission to mission, but the amount 

that is needed wfll remain relatfvely the same. There are many Items that are considered to be 

consumables (items that are non-recyclables) and these items w i l l  need to be replenished for 

each mission. 

Jnterior Cabin Desian - The lnterior deslgn (Flg.14) shows the location of all the facilities that 

w i l l  be used i n  the VSTAR from the sleeper to the control station in the rear of the cabin. To best 

show this, two views were drawn so that the left and right side of the command/control module 

a n  be seen. Other views of the cabin are an overhead view and side view of the command center 

and a view of the crew station ( F f g P )  where the Remote Manipulator System (RMS) and the 

Telerobotic Work Station (TWS) w i l l  be located. The command center is located in the bow of the 

ship and is where the commander (pilot), the navigator, and the payload specialist w i l l  be 



stationed during flight. This command/control center (Fig.%[) m s i s t s  of all the avionics 

equipment needed for control of the MOTV including computers for data processingland displays 

and keyboards mounted on !he m c a n d  control panel. Cathode-ray tubes (CRT's) and light 

emitting diode ( LED 1 displerys w i l l  be used in conjunction with a keyboard consisting of buttons 

and toggle switches. The command center w i l l  also contain windows for visual capabilities. 

Another compartment w i l l  contain more computer equipment, and the EVA equipment. 

These facilities placed throughout the cabin w i l l  be strateglcally positioned to ensure proper 

weight distribution. The vertical sleeper, waste collector and storage facilities w i l l  be located 

on one side of the cabin and the food gallery, personal hygiene center , and the controls for the 

ARS on the other. The crew station control panels (Fig.'tz) for the RMS and the TWS as well as 

the airlock (Fig.13) wf l l  be located on the back wall along wlth two small wlndows whfch 

proyide the payload specialist true visual control capabilities. 

Extra-vehicular Activity (EVA) Sumtort - Extra-vehicular activities are required when a 

crew member must go outside the safety of the cabin environment to complete a task such as 

repairing, retrieving. or maintenance of a satellite. To protect the crew member from the space 

environment , a special suit will be worn. This suit is the Environmental Mobility Unit (EMU) 

(Fig.& and is a work of art within itself. This suit is a liquid cooled, pressurized, integrated 

thermal micrometeroid garment that keeps the crewmember i n  a 100% oxygen environment 

(Ref.27). The EMU consists of three assemblies: the upper torso, the lower torso, and the 

portable l ife support system (PLSS) (Fig,z9. Before donning the EMU, the crewmember must 

wear a ventilated undergarment (Fig.25) which keeps the man cool thoughout the EVA mission. 

The PLSS contains the communicatlon system necessary to link the crew member with the 

MOTV. Each EMU is rechargable and has a power supply of approximately 7 hrs, which gives 

enough time for 6 hrs of EVA. For the satellite recovery missions, a crewmember w i l l  be fitted 
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with a Manned Manuevering Unit (MMU) (Fig.%). 

On each EMU is mounted 8 microcomputer with LED displays which supplies a constant 

oxygen and battery power check. LIke the computers on the YSTAR, the microcomputer will 

provide a warning and specifies of any corrective actions needed to be taken in case of system 

failure or emergency. The EMU will  be stored in the airlock located at the rear of the 

mmand/control cabin. 
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The communication system provides the essential capabilities that any space vehicle 

must ham VSTAR w i l l  need four different types of communication links. These l inks and their 
- .  

respective bands are shown in fable 2. The capabilities of the communication system we voice, 

telemetry, command, TV, data (analog, dlgttal), EVA, and intar-vehicular. Intervehicular 

command system (IVCS), consistingofa headset and a communkatim control box w i l l  be worn 

by each crew-member (Fig.13. The communication mtrol box can be used as an onboard 

intercan or m eottsfnal communicator for the EVA and other Ofvs and for communication with 

the spec8 statim (Ref. IO). Ths control box, which measures about 4 x4 x5 inches and weighs 

about 2 lbs, can be connecfsd to one of several intercom boxes U i m t  the cabin. This 

enables eat3 crew member the ability to mow around without loosing communication with the 

others. An option to the control box is a wireless microphone which attaches to the headset 

VSTAR w i l l  maintain mmun ica t im  wing both types of IYCS. 

On !mrd computers w i l l  transmlt and mlve all  the analog and dlgital data An 

intricate part of VSTAR’s computer system wi l l  be the mputers’abi l i ty to respond to the crew. 

Thfs type of computer system is knawn as computer friendly wd is also capable of tegulatlng air 

flaw, temperature, and ECLSS functions (Ref>?). Antennas w i l l  be wed to transfer information 

to and fm the MOTV. The antennas w l l l  be a mlxture of YHF dish, S-band (retractable, 

steerable), Ku-banddish (retractable), and UHF dish and wi l l  range from 3 to 4 feet in size. 

Antenna location w i l l  be determined by mission requirements and design restrictions. 
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VI I I. ELECTRICAL POWER 

Introduction 

The electrlcal power system for YSTAR has several bask requlrements. The first is that 

it has to be a system that can be safely used by humans. That is, for example, if nuclear power 

is used, shielding would be required to protect the crew. The second requirement is that the 

system must be capable of producing 4.9 kW continuous power and 6.0 kW peak power. The 

system must also have a total l l fe of at least 10 years, a mlssion duration llfe of 72 hours, be 

easy to shut down and start up, and be as lightweight as possible. 

The Power SystcLn Dolnains graph, figure 11, gives the basic guidelines for choosing a 

specific type of power system for a given mission duration time and required power output. 

VSTAR Is shown to be best suited for fuel cells and solar arrays. New developments in the energy 

density and l i fe of primary batteries, specifically lithium-thionyl chloride batteries, as shown 

in Vol. II , also make them a candidate for VSTAR. 

Power Systems 

In designing the electrical system for VSTAR, the following five power producing systems 

were studied: 

1.  Solar arrays 

2. Radloisotope thermoelectrlc generators 

3. I it hi um - t hiony 1 chloride batter is 

4. Hydrogen-Oxygen fuel cells 

5. Multi-fuel fuel cells 

Solar Arravs - Solar arrays are basically used to convert the suns energy to electrical 

energy by photovoltaic conversion. The array itself would extend several feet beyond the body. 
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The basic reason that solar arrays were not dwsen for VSTAR is  that maneuverability of the 

vehicle wwld be reduced. VSTAR has to be able to capture and repair satellites as well es dock 

at the space station. Large solar arrays would only prwe to he a hinderance in these operations 

with a hlgh possibility of damage. The concept of a mechanism that would repeatedly fold and 

unfold the array was considerd but rejected. Besides the added weight of the mechanical system, 

repeated foldings wwld considerably increase the chances for array failure. 

moelectric Generators - Radioisotope thermoelectric generators 

( RTB's) are nuclear devices that convert the heat produced by the decay of a radioactive 

material ,such a plutonium-238, to electrical power. RTB's were originally thought to UG en 

Option for VSTAR but the power requirements for VSTAR are much higher than flrst estimated. 

VSTAR has a 6 kW peak power requirement. The General Purpose Heat Source (GPHS) RTG. 

designed by General Electric, produces only 250 watts, weighs 122 lbs and has an estimated cost 

of $1  8OO/Watt. Based on these GPHS values an RTG the size VSTAR would require would weigh 

2928 lbs and a& $10.8 million, excluding the cost and weight for the required shielding 

(Ref.26). Clearly the RTG is better suited for unmanned, low power requirement applications. 

droaen-0xvoen Fuel Cells - A H2-02 fuel cell i s  a device that directly converts 

chemical energy to electricity. Figure 24 shows the schematlcs of this type of fuel cell. It is 

seen that the hydrogen and oxygen react with the potassium hydroxide solution setting up an 

electric potential with the reaction product being drinkable water that can be used by the VSTAR 

crew. One H2-02 fuel cell of the size used on the Space Shuttle produces 7 kW of continuous 

power, weighs 202 lbs and is 14 x 17 x 40 inches (Ref.12). For redundancy, VSTAR would 

require two such fuel cells. The hydrogen and oxygen would be stored in Dewar-type spherical 

tanks (Fig.30 &31) with a tank weight of 440 Ibs (Ref.26). The hydrogen tanks would have a 
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diameter of 45.5 InchS and the axygen tanks an diameter of 36.8 Inches. The total H2-02 fuel 

a l l  system would weigh rllmost 1300 lbs. 

&- - The lithium batteries also directly convert 

chemical energy to electrical power. Jet Propulsion Labombry, a company developing the 

battery, estimates that it will hava an energy density d 250 Watt hr/lb and an active storage 

l ife of 5- 10 years (Ref. \3). This 1s a great Improvement, over the second best, sllver-zlnc 

batteries, in weight savings, life and cost TIM system required for WAR, including 

redundancy, would require t 0 such batteries at a tots1 weight of 400 Ibs Each bat* is 9.7 x 

1 1.7 x 5.2 inches giving a total syst#n volume of only 3.5 cubic feet (Ref. 13). 

plulti-Fuel Fuel Cella- The MFFCs work on the same principal as the H2-02 fuel cells, 

but can us8 any hybocarbon fuel soch 85 gasoline, alcohol, methane, jet fuel or gasified coal. 

The system is extremely small and light weight with thin layers  between each alternating air 

and fuel pas@way math of ceramic materlals (F1& 32). TIM air 8nd fuel react 

electracttemically across these lgyers producing a current at a temperature of 800 - 1000 'C. 

A 1Sx 15inchcellisestimatedtobeabletoproducs50kWofpower(Ref.3 1, s o t h a t a s m a l l  

3 x 3 inch a l l  would be capable of powering VSTAR. Oxygen and fuel twks would be required as 

with the Hz-02 fuel cells, but the size of the tanks and amount of fuel has yet to be determined. 

The MFFC is expected to be available in about 10 years. 

Each of the above systems are good VSTAR candidates. The MFFCs were chosen over the  

other two for  several rBBsoHs. The MFFCs weigh less than the H2-% fuel cells, consequently - 

the H2-02 fuel cell3 were rejected The MFFCs were chosen over the lithium batteries because 
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thuy have a longer expected life than the batteries, Although the batteries will most likely weigh 

18s than the MFFC system, theMFFCs haw e much higher working temperature. The extra heat 

produced can be used for VSlAR's environmental control therefore eliminating the extra weight 

of a sparate M i n g  system as required with the batteries. This mwld in effect reduce the 

overall weight of the MFFC system b less than the lithium battery system. 



IX. DOCKING 

I 
I 
I 
I 

I 
I 
I 

I 
I 
I 
I 
I 

Satelllte Docking 

VSTAR w i l l  be flown to within fifty feet of the powered down and passive spacecraft 

(satellite) where rn astronaut in a space environmental suit w i l l  approach the satellite using a 

manned maneuvering unit (MMU) as shown in Figure.24. The capture of the spacecraft w i l l  be 

slmilar to the Shuttle misslons (Ref. 0 ) In that i t w i l l  be accomplished using a mechanlcal 

assembly called a stinger, which is mounted on the MMU in front of the astronaut. The stinger is 

equipped with a long probe that w i l l  be inserted into the nozzle of spent apogee motor. The end of 

the probe contains three toggle lugs which w i l l  release when the probe is inserted. A jackscrew 

extending through the probe can then stabilize the satellfte by formlng a rigid connectlon 

between the spacecraft, stinger and MMU while the MMU control system and attitude thrusters 

&pin and attitude stabilize the entire assemblage (Fig. 35) .  The astronaut w i l l  then maneuver 

the spacecraft back to the MOTV where it w i l l  be loaded into the payload bay. A telerobotic arm, 

like that of the Remote Manipulator System (RMS) used on the Space Shuttle, w l l l  be used to - 

grapple the spacecraft at the stinger and Secure it onto the supports of the truss structure. 

This method of spacecraft capture has provided a safe and efficient means of docking with 

satellites i n  past shuttle missions. It is  therefore perceived that this success wi l l  continue in 

the satellite recwery misslons of YSTAR. There is an addltlonal consideratlon however, that 

must be accounted for in the future SLR missions of VSTAR. Since a direct launch into GEO wil l  

be possible, futurespacecraft w i l l  only require a small reaction control system for minor orbit 

corrections, rather than a massive solid socket booster presently used to deliver satellites from 

Shuttle to geosynchronous orbit. This w i l l  mean that the docking procedures outlined above w i l l  

require updating for application to future satellite designs. Through this might be accomplished 

in several ways, the most logical solution would likely be a simple modification of the stinger 
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control device. Since future spacecraft w i l l  not contain an apogee kick motor, the stinger 

could be equipped with an adaptor to despin and stabilize the spacecraft using a linkage device. 

A new conceptual design called the telerobotic work station (MS) w:;l alsc, t;. 

incorporated into VSTAR'S design to assist the astronauts in  various repairing tasks. The TWS is 

designed by Martin Marietta Aerospace and consist of the robot work station and control station 

(Fig. 39, The robot work station m i s t  of three dextrous arms, controlled from 8 remote 

control statlon on board the MOP. Its capabilities include observational sensing, force sensing, 

tactical sensing, gripping and the use of tools. The TWS w i l l  work in conjunction with the RMS 

to reduce the crew time spent in hazardous operations, such as satellite refueling. 

Space Station Docking 

.. Docking to a space station w i l l  be accomplished by bringing the MOTV into coplaner orbit 

but at a slightly lower altitude than the space station. It wi l l  have a period slightly shorter than 

the space station and wi l l  eventually overtake it. The MOTV wi l l  then be manuevered to within a 

few meters of the space station docking platform so that the orbital speeds are equal. The 

remaining distance w i l l  be closed through the use of mechanical grapplers; which w i l l  m i n i m i z e  changes 

in the original momentum of the space station and lessen any tendency for it to be "bumped" into an 

undesirable orbit. Once docked, movement of the MOTV w i l l  be restrained by a rigid support 

system. 
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X. MAWEMENT 

The scheduling and management of a design project is a complicated task. The 

development of M A R  wi l l  demand extensive research and testing of the spacecraft components 

and the complete vehicle assembly. The development schedule showing estimated time for each 

phase is displayed in the VSTAR development timetable (Fig. 36). 

The preliminary design phase w i l l  outline the basic design criteria needed to 

acwmplish mission goals. A final propma1 including the design criteria and projected costs of 

the primary spacecraft systems w i l l  be completed during this time frame. 

In the second phase a more in-depth research and feasibility analysis w i l l  determine 

if the spacecraft is both economically and technically feasible. Research emphasis w i l l  be placed 

on the TWS and advanced OTV engine. Special consideration w i l l  be given to the development of a 

hlgh pressure dual expander engine with variable throat nozzle, along wlth other systems that 

are essential in the acheivement of mission objectives at lowest possible cost. 

During the latter part of the research phase, component construction and testing wil l  

begin. Each individual module w i l l  be tested as separate units first, then the entire vehicle w i l l  

be assembled for further testing. These tests w i l l  check the linkage systems for possible module 

interface or vehicle docking problems. During this phase checks of the electrical power system, 

propulsion units, flight and environmental controls, onbuard computers, robotics, and other 

systems w i l l  be thoroughly examined Environmental and guidance control systems, as well as 

the propulsion units w i l l  also undergo extensive testing. VSTAR w i l l  then be prepared for 

transportation into space. 

Once rssb/ a l l  VSTAR components w i l l  be simultaneously delivered to low earth orbit  

and stored at the space station. After components have made the transfer to the space station, 

YSTAR w i l l  be reedy for reassembly In orblt and w f l l  then undergo extensive operational 

mission testing. 

39 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The purpose of the operational mission tests is to decide i f  the MOTV is actually 

capable of executing the mission objectives. The mission complexity w i l l  range from simple 

maneuvering operations to the high!y mmpllcated tasks associated with SLR missions. Once 

VSTAR has proven itself worthy in the operational tests, it w i l l  then be available for 

commercial service. If all projected deadlines are met, VSTAR w i l l  be ful ly operational by the 

year 200 1. 
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XI. COSTANALYSIS 

i n  mermine [ne economic reasi~iiity 01 my pm!m a cost analysis or predtctton is 

requtred. By applying the NASA Space Statlon Cost Estlmating Relatlonshlps (CER), a reasonable 

cost estimate can be made for the VSTAR project ( Ref.21). The results of this estimate i s  shown 

in Table 3. These results are based on a use frequency of 10 missions per year and are 

reflections of current STS costs as well as regular VSTAR overhaul requirements. 

The cost analysis is divided into three sections: vehicle costs, management costs, and 

annual operating costs. Each section i s  further broken down into development and testing costs 

(D&T) and mission costs (MC). Vehicle Costs are a compilation of the structure, electrical 

power, and propulsion system costs. Program management costs represent the money that must 

go into the organization of personnel as well as time invested in the VSTAR project. The initial 

assembly of VSTAR in orbit i s  considered as an addition to the mission cost of the vehicle. 

Operational Costs we estimated without the use of the CER since this criteria does not apply to 

operations. 

Averaging a l l  costs over the IO year l i fe span of the vehicle, the cost per year of service 

is  $899.17 million. Each additlonal vehicle w i l l  add $ 169.70 million in hardware and 

management cost. However, the average cost per pound of payload wil l  decrease for the overall 

program. By the end of its deslgn l l fe each VSTAR wi l l  have transported 500,000 Ibs of cargo to 

and from geosynchronous orbit. The above figures taken together result in a dollar per pound 

cost of $1798.34. It is significant to recognize that 89.418 of this cost is coming from the ast 

of shuttle flights needed to lift YSTAR's fuel into orbit. Any reduction i n  the cost per pound to 

deliver fuel from earth to space w i l l  substantially lower the mt of VSTAR. 
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TABLE 3 YSTAR COST SUMMMIY ( M i l l l ~  ol DsllarS) 

I 

Strudun 
Eledricsl Power 
PKlpulslon 
initial constnrctim 
Total 

lntamtion.Assemblv.Chedtwt 
System lest and Evaluation 

3200 kg S 194.40 S 30.90 
220 kg $ 28.00 $ 5.80 
450 kg $ 45.40 $ 6.70 

- $ 74.00 
$ 267.80 $1 17.40 

S 89.50 S 23.00 
$165.10 - 

3ystem E q l n e e r l q ~  Integration $108.60 $ 9.40 

Pro'amHanagemM $75.30 $ 9.90 
total $438.50 $42.30 

Fuel (Including 1 1 STS Flights) 
Mdition/Replacemerrt of mare 
P r o g r a m V ~ e n t  
(3eneral operating Expense 
Total 

S 803.50 
$ 5.00 
$ 44.00 
S 2.50 
S 8SS.OO/yr/vehicle 
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XII. OPTIMIZATION 

1 he purpose of optimization i s  to design a vehicle that w i l l  meet the proposed mission 

requirements and do so in an economical manner. The main cost in the operation of the proposed 

orbital transfer vehicle i s  the transportation of the fuel to orbit. With this in mind , an 

"optimum" configuration would be one which performs the mission with a minimum amount of 

fuel expended. The problem dealt with here is how to design the optimum configuration. 

To get an Idea of the complexity of the problem , consider the following : 

Any increase in the burnout m a s  w i l l  increase the mass of fuel required to obtain the 

requirrl A; and any increase in the mass of fuel w i l l  increase the size of the fuel tanks and thus 

further increase the burnout mass. 

Any Increase in the burnout mass wi l l  decrease the maximum acceleration and allow for 

lighter supporting structures. This w i l l  in turn decrease the burnout mass and give higher 

accelerations. 

A change in the maximun allowable pressure i n  the fuel tank w i l l  change : 

1. The vapor pressure of the fuel , which w i l l  change the temperature, the heat of 

2. The heat leak rate into the tank and hence the m a s  evaporated. 

vaporization, and hence the mass evaporated. 

3. The stress in the tank walls, the mass of the tank, and hence the burnout riidss. 

There w i l l  be an evaporation loss and the size of the tank must be increased, but this than 

w i l l  increase the evaporation loss. An increase in the endurance w i l l  increase the mass of the l i f e  

support system and the mass of evaporation from the tanks, thus increasing the burnout mass. A 

decrease in the tank insulation thickness wi l l  simultaneously decrease the burnout mass and 

increase the mass of fuel evaporated. As the acceleration increases, the pressure, density, and 

mass at the bottom of the tank increase, thus increasing the burnout mass. 
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The list could continue. To consfder one component while lgnorlng of the interelatlons 

among the other components would result in  a highly inefficient structure, o r  worse, an 

unworkable configuration. The design of the components therefore must be considered 

simutaneously. A computer program has been written which calculates these parameters using 

iterative techniques. 

It has been found convienent to dlvide the parameters describing the vehicle into three 

categories as shown in  Table4. They w i l l  be referred to as the design constants, the design 

variables, and the calculated parameters. This corresponds to the parameters which are given, the 

parameters which are to be chosen in order to optimize the configuration, and the parameters 

whlch are to be calculated to describe the configuration. 

Table4. Parameter Divisions 

Y a r i a b b  

A V  

mpw 

Tend 

Tout 

kinsul 

rinsul 

Omax 

rmater ia l  

I SP amax 

OFR amin 

Pfuel R 

Tinsul mcabin 

Thrust ml i fe  support 

mcargo modljie 

msupportstructure 

etc. 
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The design constants are known parameters which are dictated by mission requirements or 

chosen by what w i l l  optimize the configuration. The first three in the column are A V ,  mpw, and 

Tend. The SLR mission requires a AV of approximately 29,000 ft/sec, 5000 lbm payload and an 

endurance of 72 hours. These values are the givens i n  the problem. The next values in the 

column, kinsu1 and rjnsul , are the insulation conductivity and density. for any given insulation, 

the one with the smaller r / k  ratio w i l l  provide the greatest insulating ability for a given mass of 

insulation. Therefore, the one with the smaller r / k  value w i l l  be the best choice, assuming other 

factors such as cost and suitability to the space environment are satisfied. Similairly r/o, where 

r i s  the density of the material to be used in the structure, and o i s  the maximum allowable stress 

ir: ?PA material, determine the best choice for material , again assuming satisfactory performance 

in the particular operating environment. for example, cryogenic fuel tanks mandate the use of 

stainless steels, which have a higher r /o  than aluminum , but steel i s  the more suitable material 

because of its superior characteristics at lower temperatures. However , under given stress 

conditions, support rods in a structure would weigh less if made of aluminum , hence the aluminum 

would be the better choice and provide a more efficient structure. This i s  assuming that other 

factors such as sublimation, corrosion resistance, meteorite deterioration, etc. are satisfied by 

both materials. The last of the design constants, Tout, is  the outside equilibrium temperature of 

the fuel tanks. Low temperatures are desirable i n  order to minimize evaporation losses. 

In the next column of parameters, the design variables, it i s  not obvious which values w i l l  

optimize the design. They are either subtle functions of each other or the calciilated parameters 

are complicated functions of them. The approach taken here is to calculate the remaining 

parameters in column three for as many different combinations of design variables as practical. 

from this the most desirable configuration can be selected. 

The values i n  column three can be determined once the design varaoles and design contants 

are known. As a group they are soley functions of the parametes i n  columns one and two, but 

individually they are complicated i f  not transcendental functions of the other parameters in 
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calumn three. In this case they are calculated by using iterative methods. The procedure used is 

summarized as follows: 

1 .  Calculate the masses of the components of the vehicle and sum them , iterating where 
necessary. 

2. Find the minimum and maximum accelerations from the sum of the component 
masses and reiterate. 

3. Find the mass ratio needed from AY and ISP. 

4. Find the mass of fuel required from the sum of the masses and the mass ratio and 
reiterate. 

The result of this is a structure that i s  completely "balanced" for the particular set of 

initial conditions, Le.; the m a s  of the structure is exactly the mass needed to withstand the 

maximum accelerations, the thickness of the tanks is exactly the thickness needed to withstsnd the 

pressure generated at the bottom of the tank due to acceleration effects and vapor pressure, the 

volume of the tanks is just the volume needed to contain the fuel used during burns plus the fuel 

expected to evaporate away, and so on. The structure is now optimzed for that particular set of 

initial conditions. 

For analysis purposes, the configuration is  broken into the components (Fig.3? ). T h i s  

allows simple mathematical expressions to be written for the m a s s  of the ifidividual components. 

The following is an overview of the program flow. The masses of the individual components 

(Fig.37 1 can be expressed in the following form : 

mcabin = f (mcrew, mair I mstructure, mshielding, mother) 

mlife support = f (" of Crew I Tend) 

mcargo module = f(mcabinl mlifesupportI Amax) 

mtank = f ( mfuel I mevap, Pfuel I rfuel I amin I amax rmeta! 

mevap = f (hvapor kinsul I tinsul Tend, Tfuel I Tout I Atank) 
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At this point the first iteration occurs. The value for mwap is  substitued into the 

qmss iOn  for mtank. When two consecutive values for mwap are within a specified difference, 

the iterations stop and program flow continues : 

minsul = f h a n k ,  tinsul, rinsul) 

mSUppOrt structure = f (mcabin, mlife sup ort, mtank, misul, 

mengine = f (mpurnps, mturbine, mnonle) 

mfuel meyap I amax P 

mbrnout=f(mcabin mlifesupport, mcargo module, mpayload, mtank, minsul, 

mtotal = f (mbrnout, mfuel) 

amax = f (mbrnout, thrust) 

amin = f ( mtotal, thrust) 

mevap, msupport structure, mfuel) 

At  this point in the program the second iteration occurs. The value for amax is  substituted into 

the expression for rnwrgo module. When two consecutive values of ama;u are within a specified 

difference the iterations stop and program flow continues : 

Once the mass ratio and mfuel are calculated the final iteration occurs. The vzlue for 

mfue] i s  substitued into the expression for mtank. When two consecutive valiles G f  rnfuel are 

within a specified difference the iterations stop and program flow continues. When any unknown 
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value is encountered, it is lntlally assumed zero. As the program continues execution, the initial 

assumption is replaced by a calculated one. Eventually the values converge and the program ends 

the looping. 

Six configurations were examined using the computer program. The configurations 

analyzed include engines with ISP's from 420 to 492 seconds, oxidizer fuel ratios of 6 and 7 ,  and 

three dual fuel systems with oxidizer secondary fuel ratios of 2.2 1 and 4.25. A l l  other design 

variables were held constant. A l l  of the configurations were run assuming an engine thrust of 

30,000 lbf. Thls produced moderate accelerations and a slightly higher mass of fuel required than 

for configurations using a 15,000 lbf. thrust. However , the overall burn times were reduced 

exactly by half. It 1s believed that the minimal m i r~gs  gained frUlll !he reduced thrust is negligible 

in comparison to the Incrmed operating l i fe due to the shorter burn times. It is also noted that the 

high accelerations at burnout due to the larger thrust can be minimized and the burn times st i l l  

held at a minimum if the engine is assumed throttleable. This was not taken into account in the 

configurations examined. The output for the two best configurations examined is shown in the 

Tables(5 1 6 ) .  

from the results of the program runs it is seen that ISP is the single most important 

variable i n  optimizing the configuration. Regardless of the other design variables, the 

configuration with the highest ISP consistently yielded lower fuei'masses required. This may seem 

obvious on casual inspection but is  not always true. For a given ISP , the configuration with the 

higher oxidizer fuel ratio yielded the lower mass of fuel requirdl  and the configurations 

employing the dual-fuel systems were even better. This can be accounted for by the fact that for a 

given mfuel, the higher OfR's require less LH2. Since the density of LH2 is so low, requiring 

enormous fuel tanks, the higher OFR configurations allow much of the dead weight of a large tank to 

be eliminated. It is possible then for a low ISP high OFR configuration to be superior to a high 

ISP, low OFR configuration. However, this was not the case for any of the configurations 

exam ined. 
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Due to time limitations, no optimizatlon was attempted on the thickness of the insulation 

required on the fuel tanks, nor on the pressure inside the fuel tanks. For the configurations run 

these were held a constant 0.25 inches and 20 psi for all tanks. 

The program generated output shown ln the following tables includes the specific numbers 

for the components and the m a s  of fuel required by a given configuration for the SLR mission. 

Following this i s  a detailed description of the fuel tanks and of the thermodynamic state of the fuel 

within the tank. Figure 38 is  a graphic comparison of the six configurations analyzed. The mass 

of fuel required for the SLR mission is shown on the y-axis for each configuration. The different 

configurations are plotted on the x-axis. The magnitude of influence of increasing lSPs and the 

influence of the dual-fuel system for a given ISP is  evident from the bar cj; aph representation. 

The fuel chosen for VSTAR is the bipropellant with an ISP of 492. This gave the second lowest 

mass of fuel required of the configurations examined. 
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OXYGEN/HYDROGEN RATIO 
OXYGEN/RPJ RATIO 
ISP 

ACCELERATION - HINO ACCELERATION - MAX. 

DELTA V - OBTAINABLE 
MASS RATIO 
STUCTUAL COEFF. 
PAYLOAD COEFFICIENT 
TIME. ENDURANCE 

t. I t 6  
t. 3 t 2.21 
t. I t 492 
tg.81 t 2.53 
tg'ml t 0.41 

t. I t 6.237193 
t. I t 0.099s 
t. I t 0.0724 
thourrl t 72 

[ft/8eCl : 28999.99 

THRUST tlbf 3 

HASSES OF COMPONENTS 
CABIN 
LIFE SUPPORT NODULE 
CARGO MODULE 
CARGO 
SUPPORT STRUCTURE 
HYDROGEN TANK 
OXYGEN TANK 
RPJ TANK 
ENGINE 
TOTAL BURNOUT HASS 
MASS OF FUEL 
TOTAL MASS 

: 
tlbml 
tlbml 
tlbml 
tlbml 
Clbnl 
tlbal 
tlbrnl 
tlbrnl 
tlbal 
tlbml 
tlbml 
tlbml 

TANK - MASS tlbrnl 

t 30000 

t 2247 ' 

t 1376.8C 
t 520.5203 
t 5000 
: 639.5573 
t 620.5325 
: 257.7574 
t 83.84286 
t 1000 
t 11870.25 
t 62166.8 
t 74037.05 

- MAX. STRESS tlbf/inA21: - METAL DNSTY tlbm/ftA31: - PRESS. BOT. tlbf/inA21 t - RADIUS tftl t - SURFACE AREA tft"2l t - THICKNESS tin1 : - VOLUHE tft"31 . . - VOLUHE, UTL Cft"31 . 
PROP.- VAPOR PRS Clbf/inA21: - DENSITY tlbm/ftA31: - UASS tlbml . - TEHP. Crankinel : - HEAT.VAPR2 tbtu/lbml : 
SURFACE TEMPERATUE Crankinel : 
INSULATION - RHO tlbm/ftA2-inl: - UASS tlbml . - THCXNS tin1 . 

-K Cbtu-in/hr-ftA23: 
HEAT LEAK - RATE' Cbtu/hourl: - TOT tbtul . 
HASS EVAPORATED tlbml . 

HYDROGEN 
t 620.53 

35000.00 
489.00 
20.17 
7.05 

624.57 
0.0244 
1467.73 

I. 27 
20.00 
4.38 

6399.10 
38.38 
188.16 
600.00 
0.20 
31.23 
0.2s 

0.000056 
78.57 

5657.18 
30.07 

OXYGEN 
257.76 

35000.00 
489.00 
21.97 
5.11 

328.44 
0.0193 
559.69 
0.53 
20.00 
68.64 

38394.59 
166.41 
91.62 
600.00 
0.20 
16.42 
0.2s 

0.000056 
31.90 

2296.76 
25.07 

- 
RP J 
83.84 

35000.00 
489.00 
21.88 
3.52 

15s. 77 
0.0132 
182.81 
0.17 
20.00 
9s. 11 

17373.12 

100.00 
600.00 
0.20 
7.79 
0.2s 

0.000056 
18.90 

1360.80 
13.61 

sa. 33 
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OXYGENIHYDROGEN RATIO t a l  : 
ISP 1.3 : 
ACCELERATION - HAX. Cg'sl . . 
ACCELERATION - HIN. Cg'6l . 
DELTA V - OBTAINABLE Cft/eecl : 
HASS RATIO I. I . 
STUCTUAL COEFF. c. I . 
PAYLOAD COEFFICIENT C .  I . 
TIME, ENDURANCE Chourrl : 
THRUST Ilbfl . 
HASSES OF COMPONENTS : 
CABIN Clbml 
LIFE SUPPORT MODULE Clbml 
CARGO MODULE Clbml 
CARGO Clbml 
SUPPORT STRUCTURE Clbml 
HYDROGEN TANK Clbml 
OXYGEN TANK Clbml 
ENGINE tlbml 

TOTAL BURNOUT MASS Clbml 
MASS OF FUEL Clbml 
TOTAL ?MASS Ilbml 

6 
492 
2.47 
0.40 
29000 
6.237194 
0. loll 
0.0706 
72 
30000 

: 2247 
: 1376.06 
: 511.7303 
: so00 
: 641.161 
: 802.4154 
: 369.6116 
: 1000 
: 12158.7 
: 63677.46 
: 75836.15 

TANK - MASS Clbml - MAX. STRESS Clbf/lnA23: - METAL DNSTY Clbm/ftA31: - PRESS., BOT. Clbf/inA23: - RADIUS Cftl - SURFACE AREA Cft"21 - THICKNESS tin3 . - VOLUME tft"31 - VOLUUE, MTL Cft"31 : 
PROP.- VAPOR PRS Clbf/inA21: - DENSITY tlbm/ftA33: - UASS Clbml : - TEMP. Crankinel : - HEAT.VAPR2 Cbtu/lbml : 

SURFACE TEMPERATUE Crankinel : 
INSULATION - RHO Clbm/ftA2-inl: - MASS Clbml - THCKNS tin1 . 

-K Cbtu-in/hr-ftA23 : 
HEAT LEAK - RATE tbtu/hourl: - TOT Cbtul 
MASS EVAPORATED Clbml 

HYDROGEN OXYGEN 
369.61 002.42 

35000.00 35000.00 
409.00 489.00 
20.19 22.17 
7.93 - 5.75 

709.36 415.22 
0.0274 0.0218 
2085.40 79s. 59 

1.80 0.76 
20.00 20.00 
4.38 68.64 

9096.70 54580.68 
38.38 166.41 
180.16 91.62 
600.00 600.00 
0.20 0.20 
39.47 20.76 
0.25 0 . 2 5  

0.000056 0.000056 
99.30 40.33 

7149. a3 2903.62 
38.00 31.69 
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Figure 3 - Hohmann Coplaner Transfer 
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Figure 24 -EMU with PLSS (Ref. 27) 
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Figure 29 - H202 Fuel Cell Schematic Diagrams (Ref 23) 
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Figure 32- Multiple-Fuel Fuel Cell IMFFC) (%4 3) 
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